Investigations of Cost-Effective ESP-Upgrade Measures for a Life-Time-Extension in a Grid-Stability Operating Scenario

Michael Frank – CoCon | Jürgen Student, Wolfgang Albrecht, Anna Havekost - Uniper | October 29th 2024 XVII ICESP | Kyoto, Japan | Picture taken from: FEEL KIYOMIZUDERAサイト更新 「一期一会」

MICHAEL FRANK

- First 13 years with OEMs in Air Pollution Control (Walther, Lurgi, Rothemühle)
 First practical experience in South Africa @ Kendal Power Station in 1990
- Change to an Owner & Operator/Utility in 2003...
 4 years Plant Manager (2.200 MW, 6 hard-coal fired units and district heating peaker plants)
- Various MD/CEO positions in engineering, industrial services and sales/business development
- Ex-Executive Board Member vgbe energy and VAIS
- Since 2023: President International Society for Electrostatic
 Precipitation ISESP
- Since 2024
 Michael Frank CoCon | Coaching & Consulting

A case study...

- **1. Starting Point**
- 2. Analysis
- 3. Development of solutions
- 4. Potential check
- 5. Conclusion

56 years of service and yet no end – fossil generation indispensable for securing electricity supply supporting transition to a carbon free future.

Starting Point

7 more years to back up grid system.

Environmental compliance guaranteed?

Coal exit is law. Despite security of supply now being top of agenda, it might still be even accelerated...

Coal phase-out in Germany.

Photo: Ende Gelände

Operators have already planned for shut-down of plants
 Ad-hoc LTE's are massive challenge for maintenance and ops teams

Even before Coal Exit, situation of the electrostatic precipitators in (German) power plants was not ideal...

- Electrostatic precipitators were the first highly efficient environmental protection systems and are therefore usually among the oldest components in the power plant
- Original design for ash from domestic fuels or defined fuel basket with emission limit values according to legislation at the time of installation
- Retrofitting of FGDs usually compensated for reduced performance due to ageing and new imported fuels
- Even newer plants are now operating with different fuels than design fuels due to volatile markets
- Load regimes changed significantly from base load to peak/fluctuating
 - Existing plants are mostly operated far beyond their original design parameters and have to comply with much lower ELV's

ESP-focus: Specific requirements for the grid reserve

- Only 100 150 operating hours per year expected. Probably one mandatory start-up per month to maintain staff competence and skills...
- 2. Environmental compliance from start-up. Annual average emission limit 8mg/Nm³. Due to the low absolute number of operating hours, little to no chance to compensate higher values especially since daily average is 10mg/m³.
- 3. No continuous load expected Load dictated by grid requirements, i.e. compensation of fluctuations from renewables. Boiler plant will most probably not operate in a steady state condition
- > ESP needs maximum resilience against fluctuations
- Margins towards emission limit needs to be increased by enhancing controllability and other optimization measures

3P-360°: A comprehensive analysis...

Process Periphery Precipitator

1. Process

- 1. Boiler operations & load regime
- 2. Analysis of Test & Measurement data
- 3. Fuel supply & quality
- 4. Conditioning systems
- 5. "Operational habits"

2. Periphery

- 1. Ash extraction & -transport
- 2. Boiler ash treatment
- 3. Ductwork, air heaters and ID-fans

3. Precipitator

- 1. Inspection (Casing, Electrode systems, Rapping systems, Flow internals, etc.)
- 2. Configuration (Aspect ratio, Bus section size, etc.)
- 3. Equipment (T/R-sets, controllers, heaters, etc.)

Process

Analysis of operating regime indicates strong coal quality impact and sensivity to load changes. FGD indispensable for dust emission.

Michael Frank - CoCon Coaching & Consulting | www-mf-cocon.de | All rights reserved | 2024

Process

Ops-Team is battling uphill: changing coal stock and continuous A/H-sootblowing only emergency solutions – not sustainable!

Precipitator

The ESP configuration is part of the problem: addition of slipstream ESP and relatively large electrical bus sections of the main ESP...

Michael Frank – CoCon Coaching & Consulting | www-mf-cocon.de | All rights reserved | 2024

Periphery

Small details may make a huge difference: Boiler ash (2nd pass) injection upstream ESP

- Boiler ash injection from hopper under 2nd pass ends upstream ESP under A/H
- Gas/ash-flow significantly colder and highly dust-laden compared to flue gas stream
- No internal distribution device existent, only wear protection!!
- Injected stream is likely to be conserved up to ESP inlet field due to different temperature and excellent guide vanes
- Ash will be "injected" into inlet field of Main ESP and likely cause major flashovers

Michael Frank – CoCon Coaching & Consulting | www-mf-cocon.de | All rights reserved | 2024

Periphery

Temperature distribution massively skewed due to A/H condition – strong impact on ESP performance

- Flue gas temperature significantly different between A/H 1 and 2
- Strong influence on ash resistivity and flash over threshold
- Main ESP's operating conditions dictated by weakest point in whole bus section
- Process controllability in current plant configuration very much limited

Michael Frank - CoCon Coaching & Consulting | www-mf-cocon.de | All rights reserved | 2024

Precipitator Inlet fields of MF and SSF with significantly different power consumption...

- The different electrical operating values indicate different dust concentrations in the inlet of Main **ESP** and **Slipstream ESP**
- Larger fluctuation range of the secondary current and lower voltage level indicate higher dust loading in the Main ESP
- A flexible and fast control capability of the ESP controllers is critical for good dust separation
- Large electrical fields also very disadvantageous with high flashover frequency

Michael Frank - CoCon Coaching & Consulting | www-mf-cocon.de | All rights reserved | 2024

Upgrade-Measures: Improvement of emissions starts upstream of the ESP...

- 1. Boiler Process & Operations Optimization
- 2. Mechanical Repairwork
- 3. Gas Flow Distribution (upstream ESP & internal)
- 4. ESP-Controller & HV-Supply Upgrade
- 5. Flue Gas Conditioning
- 6. New Internals / ESP-Enlargement
- 7. ESP-to-Fabric-Filter Conversion
- 8. Hybrid Filters & New Technologies

Operations, Maintenance and Fuel Purchasing need to support basic measures (step 1 & 2)...

1. Coal is not coal...

Because of the obvious impact of sulphur (and other components) in coal, a defined coal blend should be purchased. Benefits from being able to operate will by far outweigh procurement savings...

2. Start-up and Shut-down operation Specific procedures regarding ESP rapping and ash transport need to be adopted to enable longer standby periods without ash deposits and clogging.

3. Mechanical Repairwork

It goes without saying (really?): the mechanical condition and alignment of electrodes needs to be absolutely in order!

Analysis of ESP and inlet duct configuration reveals potential for effective upgrades (step 3 & 4)...

- 1. Increasing number of bus-sections Separating electrical bus sections results in better resilience against process imbalances and controllability of ESP
- New HV technologies in the first field
 3-phase or SMPS HV units in the first field can again significantly increase the power input into the field and thus significantly improve the separation.
- 3. New T/R-sets for SF and fields 2 and 3 of MF
- 4. New voltage controllers P Better and faster response and control under fluctuating conditions
- 5. Flow distribution/balance CFD-Analysis and corresponding flow correction/mixing devices bring back volume flow to design values

Upgrade-Measures: Improvement of emissions starts upstream of the ESP...

- 1. Boiler Process & Operations Optimization
- 2. Mechanical Repairwork
- ✓ 3. Gas Flow Distribution (upstream ESP & internal)
- ✓ 4. ESP-Controller & HV-Supply Upgrade
- 5. Flue Gas Conditioning
- **X** 6. New Internals / ESP-Enlargement
- **X** 7. ESP-to-Fabric-Filter Conversion
- 8. Hybrid Filters & New Technologies

Potential Check Mission accomplished?

All measures selected expected to reinstate sufficient operational emission margin to absorb most fluctuations experienced so far...

- Original design 1967 85mg/m³ w/o downstream FGD system
- FGD dust collection estimated at 90% (and validated from experience)
- ESP modelling based on T&M data so very good process fit of reference. No further corrections required.
- Combination of improved ESP performance compensating adverse ops conditions plus FGD collection is sufficient for required emission margin
- Any volume flow balance correction will further contribute to a lower emission Michael Frank – CoCon Coaching & Consulting | www-

Expected Emissions		HF		BSF	
		Upgrade	PlusFlow	Upgrade	PlusFlow
V	m³/s	397	343	142	197
А	m²/m³/s	33.869	33.869	19.793	19.793
SCA	m²/m³/s	85	99	139	101
w _D	cm/s	6,03	6,03	5,72	5,72
η_{ESP}	%	99,42	99,74	99,97	99,68
Se	g/m³	8	8	8	8
Sa	mg/m³	46	21	3	25
Avg Upgrade	mg/m³	35			
Avg Flow	mg/m³	22			
η_{FGD}	%	90%			
S _a Stack U	mg/m³	3			
S _a Stack F	mg/m132	2			

- Vintage ESP-plants, especially those which haven't seen much upgrades can have significant potential for emission improvements
- It takes thorough analysis and a look beyond the precipitator inlet and outlet: biggest potential may be in the periphery or in the process
- It's a joint effort: Operations, Maintenance, Fuel Management as well as OEM's have their share to successfully reach a sustainable outcome
- No plant is the same but the methodology is universal:

Process Periphery Precipitator

Stay tuned...

Dechant-Fein-Str. 16 51375 Leverkusen Germany

